Metamath Proof Explorer
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl3anc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
syl3anc.3 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
syl3Xanc.4 |
⊢ ( 𝜑 → 𝜏 ) |
|
|
syl13anc.5 |
⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) |
|
Assertion |
syl13anc |
⊢ ( 𝜑 → 𝜂 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl3anc.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
syl3anc.2 |
⊢ ( 𝜑 → 𝜒 ) |
| 3 |
|
syl3anc.3 |
⊢ ( 𝜑 → 𝜃 ) |
| 4 |
|
syl3Xanc.4 |
⊢ ( 𝜑 → 𝜏 ) |
| 5 |
|
syl13anc.5 |
⊢ ( ( 𝜓 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) |
| 6 |
2 3 4
|
3jca |
⊢ ( 𝜑 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
| 7 |
1 6 5
|
syl2anc |
⊢ ( 𝜑 → 𝜂 ) |