Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)
|
|
Ref |
Expression |
|
Hypotheses |
syl21anbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl21anbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
syl21anbrc.3 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
syl21anbrc.4 |
⊢ ( 𝜏 ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
|
Assertion |
syl21anbrc |
⊢ ( 𝜑 → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl21anbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl21anbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
syl21anbrc.3 |
⊢ ( 𝜑 → 𝜃 ) |
4 |
|
syl21anbrc.4 |
⊢ ( 𝜏 ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
5 |
1 2 3
|
jca31 |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
6 |
5 4
|
sylibr |
⊢ ( 𝜑 → 𝜏 ) |