Metamath Proof Explorer


Theorem syl21anbrc

Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)

Ref Expression
Hypotheses syl21anbrc.1 ( 𝜑𝜓 )
syl21anbrc.2 ( 𝜑𝜒 )
syl21anbrc.3 ( 𝜑𝜃 )
syl21anbrc.4 ( 𝜏 ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
Assertion syl21anbrc ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 syl21anbrc.1 ( 𝜑𝜓 )
2 syl21anbrc.2 ( 𝜑𝜒 )
3 syl21anbrc.3 ( 𝜑𝜃 )
4 syl21anbrc.4 ( 𝜏 ↔ ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
5 1 2 3 jca31 ( 𝜑 → ( ( 𝜓𝜒 ) ∧ 𝜃 ) )
6 5 4 sylibr ( 𝜑𝜏 )