Metamath Proof Explorer


Theorem syl2an2

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)

Ref Expression
Hypotheses syl2an2.1 ( 𝜑𝜓 )
syl2an2.2 ( ( 𝜒𝜑 ) → 𝜃 )
syl2an2.3 ( ( 𝜓𝜃 ) → 𝜏 )
Assertion syl2an2 ( ( 𝜒𝜑 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syl2an2.1 ( 𝜑𝜓 )
2 syl2an2.2 ( ( 𝜒𝜑 ) → 𝜃 )
3 syl2an2.3 ( ( 𝜓𝜃 ) → 𝜏 )
4 1 adantl ( ( 𝜒𝜑 ) → 𝜓 )
5 4 2 3 syl2anc ( ( 𝜒𝜑 ) → 𝜏 )