Metamath Proof Explorer
Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
syl2an2.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl2an2.2 |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜃 ) |
|
|
syl2an2.3 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
syl2an2 |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2an2.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl2an2.2 |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜃 ) |
3 |
|
syl2an2.3 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) |
4 |
1
|
adantl |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
5 |
4 2 3
|
syl2anc |
⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) |