Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Abbreviated conjunction and disjunction of three wff's
syl2an23an
Metamath Proof Explorer
Description: Deduction related to syl3an with antecedents in standard conjunction
form. (Contributed by Alan Sare , 31-Aug-2016) (Proof shortened by Wolf Lammen , 28-Jun-2022)
Ref
Expression
Hypotheses
syl2an23an.1
⊢ ( 𝜑 → 𝜓 )
syl2an23an.2
⊢ ( 𝜑 → 𝜒 )
syl2an23an.3
⊢ ( ( 𝜃 ∧ 𝜑 ) → 𝜏 )
syl2an23an.4
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 )
Assertion
syl2an23an
⊢ ( ( 𝜃 ∧ 𝜑 ) → 𝜂 )
Proof
Step
Hyp
Ref
Expression
1
syl2an23an.1
⊢ ( 𝜑 → 𝜓 )
2
syl2an23an.2
⊢ ( 𝜑 → 𝜒 )
3
syl2an23an.3
⊢ ( ( 𝜃 ∧ 𝜑 ) → 𝜏 )
4
syl2an23an.4
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 )
5
1 2 3 4
syl2an3an
⊢ ( ( 𝜑 ∧ ( 𝜃 ∧ 𝜑 ) ) → 𝜂 )
6
5
anabss7
⊢ ( ( 𝜃 ∧ 𝜑 ) → 𝜂 )