Metamath Proof Explorer


Theorem syl2an23an

Description: Deduction related to syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016) (Proof shortened by Wolf Lammen, 28-Jun-2022)

Ref Expression
Hypotheses syl2an23an.1 ( 𝜑𝜓 )
syl2an23an.2 ( 𝜑𝜒 )
syl2an23an.3 ( ( 𝜃𝜑 ) → 𝜏 )
syl2an23an.4 ( ( 𝜓𝜒𝜏 ) → 𝜂 )
Assertion syl2an23an ( ( 𝜃𝜑 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl2an23an.1 ( 𝜑𝜓 )
2 syl2an23an.2 ( 𝜑𝜒 )
3 syl2an23an.3 ( ( 𝜃𝜑 ) → 𝜏 )
4 syl2an23an.4 ( ( 𝜓𝜒𝜏 ) → 𝜂 )
5 1 2 3 4 syl2an3an ( ( 𝜑 ∧ ( 𝜃𝜑 ) ) → 𝜂 )
6 5 anabss7 ( ( 𝜃𝜑 ) → 𝜂 )