Metamath Proof Explorer


Theorem syl2an2r

Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016) (Proof shortened by Wolf Lammen, 28-Mar-2022)

Ref Expression
Hypotheses syl2an2r.1 ( 𝜑𝜓 )
syl2an2r.2 ( ( 𝜑𝜒 ) → 𝜃 )
syl2an2r.3 ( ( 𝜓𝜃 ) → 𝜏 )
Assertion syl2an2r ( ( 𝜑𝜒 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syl2an2r.1 ( 𝜑𝜓 )
2 syl2an2r.2 ( ( 𝜑𝜒 ) → 𝜃 )
3 syl2an2r.3 ( ( 𝜓𝜃 ) → 𝜏 )
4 1 3 sylan ( ( 𝜑𝜃 ) → 𝜏 )
5 2 4 syldan ( ( 𝜑𝜒 ) → 𝜏 )