Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical conjunction
syl2an2r
Metamath Proof Explorer
Description: syl2anr with antecedents in standard conjunction form. (Contributed by Alan Sare , 27-Aug-2016) (Proof shortened by Wolf Lammen , 28-Mar-2022)
Ref
Expression
Hypotheses
syl2an2r.1
⊢ ( 𝜑 → 𝜓 )
syl2an2r.2
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 )
syl2an2r.3
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 )
Assertion
syl2an2r
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 )
Proof
Step
Hyp
Ref
Expression
1
syl2an2r.1
⊢ ( 𝜑 → 𝜓 )
2
syl2an2r.2
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 )
3
syl2an2r.3
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜏 )
4
1 3
sylan
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 )
5
2 4
syldan
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜏 )