Metamath Proof Explorer


Theorem syl2an3an

Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)

Ref Expression
Hypotheses syl2an3an.1 ( 𝜑𝜓 )
syl2an3an.2 ( 𝜑𝜒 )
syl2an3an.3 ( 𝜃𝜏 )
syl2an3an.4 ( ( 𝜓𝜒𝜏 ) → 𝜂 )
Assertion syl2an3an ( ( 𝜑𝜃 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl2an3an.1 ( 𝜑𝜓 )
2 syl2an3an.2 ( 𝜑𝜒 )
3 syl2an3an.3 ( 𝜃𝜏 )
4 syl2an3an.4 ( ( 𝜓𝜒𝜏 ) → 𝜂 )
5 1 2 3 4 syl3an ( ( 𝜑𝜑𝜃 ) → 𝜂 )
6 5 3anidm12 ( ( 𝜑𝜃 ) → 𝜂 )