Metamath Proof Explorer
Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
syl2an3an.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl2an3an.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
syl2an3an.3 |
⊢ ( 𝜃 → 𝜏 ) |
|
|
syl2an3an.4 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2an3an.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl2an3an.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
syl2an3an.3 |
⊢ ( 𝜃 → 𝜏 ) |
4 |
|
syl2an3an.4 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜃 ) → 𝜂 ) |
6 |
5
|
3anidm12 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜂 ) |