Metamath Proof Explorer
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)
|
|
Ref |
Expression |
|
Hypotheses |
syl2anb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
syl2anb.2 |
⊢ ( 𝜏 ↔ 𝜒 ) |
|
|
syl2anb.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
syl2anb |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl2anb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 2 |
|
syl2anb.2 |
⊢ ( 𝜏 ↔ 𝜒 ) |
| 3 |
|
syl2anb.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 4 |
1 3
|
sylanb |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| 5 |
2 4
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |