Metamath Proof Explorer


Theorem syl2anb

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anb.1 ( 𝜑𝜓 )
syl2anb.2 ( 𝜏𝜒 )
syl2anb.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion syl2anb ( ( 𝜑𝜏 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 syl2anb.1 ( 𝜑𝜓 )
2 syl2anb.2 ( 𝜏𝜒 )
3 syl2anb.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 3 sylanb ( ( 𝜑𝜒 ) → 𝜃 )
5 2 4 sylan2b ( ( 𝜑𝜏 ) → 𝜃 )