Metamath Proof Explorer


Theorem syl2anbr

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anbr.1 ( 𝜓𝜑 )
syl2anbr.2 ( 𝜒𝜏 )
syl2anbr.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion syl2anbr ( ( 𝜑𝜏 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 syl2anbr.1 ( 𝜓𝜑 )
2 syl2anbr.2 ( 𝜒𝜏 )
3 syl2anbr.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 3 sylanbr ( ( 𝜑𝜒 ) → 𝜃 )
5 2 4 sylan2br ( ( 𝜑𝜏 ) → 𝜃 )