Metamath Proof Explorer


Theorem syl2anc

Description: Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012)

Ref Expression
Hypotheses syl2anc.1 ( 𝜑𝜓 )
syl2anc.2 ( 𝜑𝜒 )
syl2anc.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion syl2anc ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 syl2anc.1 ( 𝜑𝜓 )
2 syl2anc.2 ( 𝜑𝜒 )
3 syl2anc.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 3 ex ( 𝜓 → ( 𝜒𝜃 ) )
5 1 2 4 sylc ( 𝜑𝜃 )