Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2and.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
syl2and.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) | ||
syl2and.3 | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) ) | ||
Assertion | syl2and | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | syl2and.2 | ⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) | |
3 | syl2and.3 | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜏 ) → 𝜂 ) ) | |
4 | 2 3 | sylan2d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜂 ) ) |
5 | 1 4 | syland | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) ) |