Metamath Proof Explorer


Theorem syl2and

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syl2and.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl2and.2 ( 𝜑 → ( 𝜃𝜏 ) )
syl2and.3 ( 𝜑 → ( ( 𝜒𝜏 ) → 𝜂 ) )
Assertion syl2and ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜂 ) )

Proof

Step Hyp Ref Expression
1 syl2and.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl2and.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 syl2and.3 ( 𝜑 → ( ( 𝜒𝜏 ) → 𝜂 ) )
4 2 3 sylan2d ( 𝜑 → ( ( 𝜒𝜃 ) → 𝜂 ) )
5 1 4 syland ( 𝜑 → ( ( 𝜓𝜃 ) → 𝜂 ) )