Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2ani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
syl2ani.2 | ⊢ ( 𝜂 → 𝜃 ) | ||
syl2ani.3 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
Assertion | syl2ani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2ani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
2 | syl2ani.2 | ⊢ ( 𝜂 → 𝜃 ) | |
3 | syl2ani.3 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
4 | 2 3 | sylan2i | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜂 ) → 𝜏 ) ) |
5 | 1 4 | sylani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) ) |