Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2ani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| syl2ani.2 | ⊢ ( 𝜂 → 𝜃 ) | ||
| syl2ani.3 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | syl2ani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | syl2ani.2 | ⊢ ( 𝜂 → 𝜃 ) | |
| 3 | syl2ani.3 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 4 | 2 3 | sylan2i | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜂 ) → 𝜏 ) ) |
| 5 | 1 4 | sylani | ⊢ ( 𝜓 → ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) ) |