Metamath Proof Explorer


Theorem syl2ani

Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypotheses syl2ani.1 ( 𝜑𝜒 )
syl2ani.2 ( 𝜂𝜃 )
syl2ani.3 ( 𝜓 → ( ( 𝜒𝜃 ) → 𝜏 ) )
Assertion syl2ani ( 𝜓 → ( ( 𝜑𝜂 ) → 𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl2ani.1 ( 𝜑𝜒 )
2 syl2ani.2 ( 𝜂𝜃 )
3 syl2ani.3 ( 𝜓 → ( ( 𝜒𝜃 ) → 𝜏 ) )
4 2 3 sylan2i ( 𝜓 → ( ( 𝜒𝜂 ) → 𝜏 ) )
5 1 4 sylani ( 𝜓 → ( ( 𝜑𝜂 ) → 𝜏 ) )