Metamath Proof Explorer
Description: A double syllogism inference. For an implication-only version, see
syl2imc . (Contributed by NM, 17-Sep-2013)
|
|
Ref |
Expression |
|
Hypotheses |
syl2an.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl2an.2 |
⊢ ( 𝜏 → 𝜒 ) |
|
|
syl2an.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
syl2anr |
⊢ ( ( 𝜏 ∧ 𝜑 ) → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2an.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl2an.2 |
⊢ ( 𝜏 → 𝜒 ) |
3 |
|
syl2an.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜃 ) |
5 |
4
|
ancoms |
⊢ ( ( 𝜏 ∧ 𝜑 ) → 𝜃 ) |