Metamath Proof Explorer
		
		
		
		Description:  Syllogism combined with contraction.  (Contributed by NM, 11-Mar-2012)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						syl3anc.1 | 
						⊢ ( 𝜑  →  𝜓 )  | 
					
					
						 | 
						 | 
						syl3anc.2 | 
						⊢ ( 𝜑  →  𝜒 )  | 
					
					
						 | 
						 | 
						syl3anc.3 | 
						⊢ ( 𝜑  →  𝜃 )  | 
					
					
						 | 
						 | 
						syl3Xanc.4 | 
						⊢ ( 𝜑  →  𝜏 )  | 
					
					
						 | 
						 | 
						syl23anc.5 | 
						⊢ ( 𝜑  →  𝜂 )  | 
					
					
						 | 
						 | 
						syl33anc.6 | 
						⊢ ( 𝜑  →  𝜁 )  | 
					
					
						 | 
						 | 
						syl133anc.7 | 
						⊢ ( 𝜑  →  𝜎 )  | 
					
					
						 | 
						 | 
						syl233anc.8 | 
						⊢ ( 𝜑  →  𝜌 )  | 
					
					
						 | 
						 | 
						syl323anc.9 | 
						⊢ ( ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  ∧  ( 𝜏  ∧  𝜂 )  ∧  ( 𝜁  ∧  𝜎  ∧  𝜌 ) )  →  𝜇 )  | 
					
				
					 | 
					Assertion | 
					syl323anc | 
					⊢  ( 𝜑  →  𝜇 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							syl3anc.1 | 
							⊢ ( 𝜑  →  𝜓 )  | 
						
						
							| 2 | 
							
								
							 | 
							syl3anc.2 | 
							⊢ ( 𝜑  →  𝜒 )  | 
						
						
							| 3 | 
							
								
							 | 
							syl3anc.3 | 
							⊢ ( 𝜑  →  𝜃 )  | 
						
						
							| 4 | 
							
								
							 | 
							syl3Xanc.4 | 
							⊢ ( 𝜑  →  𝜏 )  | 
						
						
							| 5 | 
							
								
							 | 
							syl23anc.5 | 
							⊢ ( 𝜑  →  𝜂 )  | 
						
						
							| 6 | 
							
								
							 | 
							syl33anc.6 | 
							⊢ ( 𝜑  →  𝜁 )  | 
						
						
							| 7 | 
							
								
							 | 
							syl133anc.7 | 
							⊢ ( 𝜑  →  𝜎 )  | 
						
						
							| 8 | 
							
								
							 | 
							syl233anc.8 | 
							⊢ ( 𝜑  →  𝜌 )  | 
						
						
							| 9 | 
							
								
							 | 
							syl323anc.9 | 
							⊢ ( ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  ∧  ( 𝜏  ∧  𝜂 )  ∧  ( 𝜁  ∧  𝜎  ∧  𝜌 ) )  →  𝜇 )  | 
						
						
							| 10 | 
							
								4 5
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝜏  ∧  𝜂 ) )  | 
						
						
							| 11 | 
							
								1 2 3 10 6 7 8 9
							 | 
							syl313anc | 
							⊢ ( 𝜑  →  𝜇 )  |