Metamath Proof Explorer
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004)
|
|
Ref |
Expression |
|
Hypotheses |
syl3an.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl3an.2 |
⊢ ( 𝜒 → 𝜃 ) |
|
|
syl3an.3 |
⊢ ( 𝜏 → 𝜂 ) |
|
|
syl3an.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
|
Assertion |
syl3an |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3an.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl3an.2 |
⊢ ( 𝜒 → 𝜃 ) |
3 |
|
syl3an.3 |
⊢ ( 𝜏 → 𝜂 ) |
4 |
|
syl3an.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
5 |
1 2 3
|
3anim123i |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |
6 |
5 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |