Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)
|
|
Ref |
Expression |
|
Hypotheses |
syl3an1br.1 |
⊢ ( 𝜓 ↔ 𝜑 ) |
|
|
syl3an1br.2 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
syl3an1br |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3an1br.1 |
⊢ ( 𝜓 ↔ 𝜑 ) |
2 |
|
syl3an1br.2 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
3 |
1
|
biimpri |
⊢ ( 𝜑 → 𝜓 ) |
4 |
3 2
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |