Metamath Proof Explorer


Theorem syl3an2br

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)

Ref Expression
Hypotheses syl3an2br.1 ( 𝜒𝜑 )
syl3an2br.2 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
Assertion syl3an2br ( ( 𝜓𝜑𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syl3an2br.1 ( 𝜒𝜑 )
2 syl3an2br.2 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
3 1 biimpri ( 𝜑𝜒 )
4 3 2 syl3an2 ( ( 𝜓𝜑𝜃 ) → 𝜏 )