Metamath Proof Explorer
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995) (Proof
shortened by Wolf Lammen, 26-Jun-2022)
|
|
Ref |
Expression |
|
Hypotheses |
syl3an3.1 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
syl3an3.2 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
syl3an3 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3an3.1 |
⊢ ( 𝜑 → 𝜃 ) |
2 |
|
syl3an3.2 |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
3 |
1
|
3anim3i |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) → ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
4 |
3 2
|
syl |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) → 𝜏 ) |