Metamath Proof Explorer
		
		
		
		Description:  A syllogism inference.  (Contributed by NM, 22-Aug-1995)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | syl3an3br.1 | ⊢ ( 𝜃  ↔  𝜑 ) | 
					
						|  |  | syl3an3br.2 | ⊢ ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  →  𝜏 ) | 
				
					|  | Assertion | syl3an3br | ⊢  ( ( 𝜓  ∧  𝜒  ∧  𝜑 )  →  𝜏 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | syl3an3br.1 | ⊢ ( 𝜃  ↔  𝜑 ) | 
						
							| 2 |  | syl3an3br.2 | ⊢ ( ( 𝜓  ∧  𝜒  ∧  𝜃 )  →  𝜏 ) | 
						
							| 3 | 1 | biimpri | ⊢ ( 𝜑  →  𝜃 ) | 
						
							| 4 | 3 2 | syl3an3 | ⊢ ( ( 𝜓  ∧  𝜒  ∧  𝜑 )  →  𝜏 ) |