Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an9b.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| syl3an9b.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | ||
| syl3an9b.3 | ⊢ ( 𝜂 → ( 𝜏 ↔ 𝜁 ) ) | ||
| Assertion | syl3an9b | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜓 ↔ 𝜁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an9b.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | syl3an9b.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | |
| 3 | syl3an9b.3 | ⊢ ( 𝜂 → ( 𝜏 ↔ 𝜁 ) ) | |
| 4 | 1 2 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜏 ) ) |
| 5 | 4 3 | sylan9bb | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜂 ) → ( 𝜓 ↔ 𝜁 ) ) |
| 6 | 5 | 3impa | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜂 ) → ( 𝜓 ↔ 𝜁 ) ) |