Metamath Proof Explorer


Theorem syl3an9b

Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995)

Ref Expression
Hypotheses syl3an9b.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl3an9b.2 ( 𝜃 → ( 𝜒𝜏 ) )
syl3an9b.3 ( 𝜂 → ( 𝜏𝜁 ) )
Assertion syl3an9b ( ( 𝜑𝜃𝜂 ) → ( 𝜓𝜁 ) )

Proof

Step Hyp Ref Expression
1 syl3an9b.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl3an9b.2 ( 𝜃 → ( 𝜒𝜏 ) )
3 syl3an9b.3 ( 𝜂 → ( 𝜏𝜁 ) )
4 1 2 sylan9bb ( ( 𝜑𝜃 ) → ( 𝜓𝜏 ) )
5 4 3 sylan9bb ( ( ( 𝜑𝜃 ) ∧ 𝜂 ) → ( 𝜓𝜁 ) )
6 5 3impa ( ( 𝜑𝜃𝜂 ) → ( 𝜓𝜁 ) )