Metamath Proof Explorer


Theorem syl3anb

Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005)

Ref Expression
Hypotheses syl3anb.1 ( 𝜑𝜓 )
syl3anb.2 ( 𝜒𝜃 )
syl3anb.3 ( 𝜏𝜂 )
syl3anb.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
Assertion syl3anb ( ( 𝜑𝜒𝜏 ) → 𝜁 )

Proof

Step Hyp Ref Expression
1 syl3anb.1 ( 𝜑𝜓 )
2 syl3anb.2 ( 𝜒𝜃 )
3 syl3anb.3 ( 𝜏𝜂 )
4 syl3anb.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
5 1 2 3 3anbi123i ( ( 𝜑𝜒𝜏 ) ↔ ( 𝜓𝜃𝜂 ) )
6 5 4 sylbi ( ( 𝜑𝜒𝜏 ) → 𝜁 )