Metamath Proof Explorer
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
|
syl3anb.2 |
⊢ ( 𝜒 ↔ 𝜃 ) |
|
|
syl3anb.3 |
⊢ ( 𝜏 ↔ 𝜂 ) |
|
|
syl3anb.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
|
Assertion |
syl3anb |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl3anb.1 |
⊢ ( 𝜑 ↔ 𝜓 ) |
2 |
|
syl3anb.2 |
⊢ ( 𝜒 ↔ 𝜃 ) |
3 |
|
syl3anb.3 |
⊢ ( 𝜏 ↔ 𝜂 ) |
4 |
|
syl3anb.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
5 |
1 2 3
|
3anbi123i |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ↔ ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) |
6 |
5 4
|
sylbi |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |