Metamath Proof Explorer


Theorem syl3anbr

Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses syl3anbr.1 ( 𝜓𝜑 )
syl3anbr.2 ( 𝜃𝜒 )
syl3anbr.3 ( 𝜂𝜏 )
syl3anbr.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
Assertion syl3anbr ( ( 𝜑𝜒𝜏 ) → 𝜁 )

Proof

Step Hyp Ref Expression
1 syl3anbr.1 ( 𝜓𝜑 )
2 syl3anbr.2 ( 𝜃𝜒 )
3 syl3anbr.3 ( 𝜂𝜏 )
4 syl3anbr.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
5 1 bicomi ( 𝜑𝜓 )
6 2 bicomi ( 𝜒𝜃 )
7 3 bicomi ( 𝜏𝜂 )
8 5 6 7 4 syl3anb ( ( 𝜑𝜒𝜏 ) → 𝜁 )