Metamath Proof Explorer
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anbr.1 |
⊢ ( 𝜓 ↔ 𝜑 ) |
|
|
syl3anbr.2 |
⊢ ( 𝜃 ↔ 𝜒 ) |
|
|
syl3anbr.3 |
⊢ ( 𝜂 ↔ 𝜏 ) |
|
|
syl3anbr.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
|
Assertion |
syl3anbr |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl3anbr.1 |
⊢ ( 𝜓 ↔ 𝜑 ) |
| 2 |
|
syl3anbr.2 |
⊢ ( 𝜃 ↔ 𝜒 ) |
| 3 |
|
syl3anbr.3 |
⊢ ( 𝜂 ↔ 𝜏 ) |
| 4 |
|
syl3anbr.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
| 5 |
1
|
bicomi |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 6 |
2
|
bicomi |
⊢ ( 𝜒 ↔ 𝜃 ) |
| 7 |
3
|
bicomi |
⊢ ( 𝜏 ↔ 𝜂 ) |
| 8 |
5 6 7 4
|
syl3anb |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |