Metamath Proof Explorer


Theorem syl3anbrc

Description: Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014)

Ref Expression
Hypotheses syl3anbrc.1 ( 𝜑𝜓 )
syl3anbrc.2 ( 𝜑𝜒 )
syl3anbrc.3 ( 𝜑𝜃 )
syl3anbrc.4 ( 𝜏 ↔ ( 𝜓𝜒𝜃 ) )
Assertion syl3anbrc ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 syl3anbrc.1 ( 𝜑𝜓 )
2 syl3anbrc.2 ( 𝜑𝜒 )
3 syl3anbrc.3 ( 𝜑𝜃 )
4 syl3anbrc.4 ( 𝜏 ↔ ( 𝜓𝜒𝜃 ) )
5 1 2 3 3jca ( 𝜑 → ( 𝜓𝜒𝜃 ) )
6 5 4 sylibr ( 𝜑𝜏 )