Metamath Proof Explorer


Theorem syl3anl

Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006)

Ref Expression
Hypotheses syl3anl.1 ( 𝜑𝜓 )
syl3anl.2 ( 𝜒𝜃 )
syl3anl.3 ( 𝜏𝜂 )
syl3anl.4 ( ( ( 𝜓𝜃𝜂 ) ∧ 𝜁 ) → 𝜎 )
Assertion syl3anl ( ( ( 𝜑𝜒𝜏 ) ∧ 𝜁 ) → 𝜎 )

Proof

Step Hyp Ref Expression
1 syl3anl.1 ( 𝜑𝜓 )
2 syl3anl.2 ( 𝜒𝜃 )
3 syl3anl.3 ( 𝜏𝜂 )
4 syl3anl.4 ( ( ( 𝜓𝜃𝜂 ) ∧ 𝜁 ) → 𝜎 )
5 1 2 3 3anim123i ( ( 𝜑𝜒𝜏 ) → ( 𝜓𝜃𝜂 ) )
6 5 4 sylan ( ( ( 𝜑𝜒𝜏 ) ∧ 𝜁 ) → 𝜎 )