Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anl.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3anl.2 | ⊢ ( 𝜒 → 𝜃 ) | ||
| syl3anl.3 | ⊢ ( 𝜏 → 𝜂 ) | ||
| syl3anl.4 | ⊢ ( ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ∧ 𝜁 ) → 𝜎 ) | ||
| Assertion | syl3anl | ⊢ ( ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ∧ 𝜁 ) → 𝜎 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anl.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3anl.2 | ⊢ ( 𝜒 → 𝜃 ) | |
| 3 | syl3anl.3 | ⊢ ( 𝜏 → 𝜂 ) | |
| 4 | syl3anl.4 | ⊢ ( ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ∧ 𝜁 ) → 𝜎 ) | |
| 5 | 1 2 3 | 3anim123i | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) ) | 
| 6 | 5 4 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) ∧ 𝜁 ) → 𝜎 ) |