Metamath Proof Explorer


Theorem syl3anl1

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl1.1 ( 𝜑𝜓 )
syl3anl1.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion syl3anl1 ( ( ( 𝜑𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anl1.1 ( 𝜑𝜓 )
2 syl3anl1.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
3 1 3anim1i ( ( 𝜑𝜒𝜃 ) → ( 𝜓𝜒𝜃 ) )
4 3 2 sylan ( ( ( 𝜑𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )