Metamath Proof Explorer


Theorem syl3anl2

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anl2.1 ( 𝜑𝜒 )
syl3anl2.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion syl3anl2 ( ( ( 𝜓𝜑𝜃 ) ∧ 𝜏 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anl2.1 ( 𝜑𝜒 )
2 syl3anl2.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
3 1 3anim2i ( ( 𝜓𝜑𝜃 ) → ( 𝜓𝜒𝜃 ) )
4 3 2 sylan ( ( ( 𝜓𝜑𝜃 ) ∧ 𝜏 ) → 𝜂 )