Metamath Proof Explorer


Theorem syl3anl3

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl3.1 ( 𝜑𝜃 )
syl3anl3.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
Assertion syl3anl3 ( ( ( 𝜓𝜒𝜑 ) ∧ 𝜏 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anl3.1 ( 𝜑𝜃 )
2 syl3anl3.2 ( ( ( 𝜓𝜒𝜃 ) ∧ 𝜏 ) → 𝜂 )
3 1 3anim3i ( ( 𝜓𝜒𝜑 ) → ( 𝜓𝜒𝜃 ) )
4 3 2 sylan ( ( ( 𝜓𝜒𝜑 ) ∧ 𝜏 ) → 𝜂 )