Metamath Proof Explorer


Theorem syl3anr2

Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anr2.1 ( 𝜑𝜃 )
syl3anr2.2 ( ( 𝜒 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜂 )
Assertion syl3anr2 ( ( 𝜒 ∧ ( 𝜓𝜑𝜏 ) ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anr2.1 ( 𝜑𝜃 )
2 syl3anr2.2 ( ( 𝜒 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜂 )
3 1 3anim2i ( ( 𝜓𝜑𝜏 ) → ( 𝜓𝜃𝜏 ) )
4 3 2 sylan2 ( ( 𝜒 ∧ ( 𝜓𝜑𝜏 ) ) → 𝜂 )