Metamath Proof Explorer


Theorem syl3anr3

Description: A syllogism inference. (Contributed by NM, 23-Aug-2007)

Ref Expression
Hypotheses syl3anr3.1 ( 𝜑𝜏 )
syl3anr3.2 ( ( 𝜒 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜂 )
Assertion syl3anr3 ( ( 𝜒 ∧ ( 𝜓𝜃𝜑 ) ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anr3.1 ( 𝜑𝜏 )
2 syl3anr3.2 ( ( 𝜒 ∧ ( 𝜓𝜃𝜏 ) ) → 𝜂 )
3 1 3anim3i ( ( 𝜓𝜃𝜑 ) → ( 𝜓𝜃𝜏 ) )
4 3 2 sylan2 ( ( 𝜒 ∧ ( 𝜓𝜃𝜑 ) ) → 𝜂 )