Description: A syllogism inference. (Contributed by NM, 23-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anr3.1 | ⊢ ( 𝜑 → 𝜏 ) | |
| syl3anr3.2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | ||
| Assertion | syl3anr3 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜑 ) ) → 𝜂 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anr3.1 | ⊢ ( 𝜑 → 𝜏 ) | |
| 2 | syl3anr3.2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜂 ) | |
| 3 | 1 | 3anim3i | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜑 ) → ( 𝜓 ∧ 𝜃 ∧ 𝜏 ) ) | 
| 4 | 3 2 | sylan2 | ⊢ ( ( 𝜒 ∧ ( 𝜓 ∧ 𝜃 ∧ 𝜑 ) ) → 𝜂 ) |