Metamath Proof Explorer


Theorem syl56

Description: Combine syl5 and syl6 . (Contributed by NM, 14-Nov-2013)

Ref Expression
Hypotheses syl56.1 ( 𝜑𝜓 )
syl56.2 ( 𝜒 → ( 𝜓𝜃 ) )
syl56.3 ( 𝜃𝜏 )
Assertion syl56 ( 𝜒 → ( 𝜑𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl56.1 ( 𝜑𝜓 )
2 syl56.2 ( 𝜒 → ( 𝜓𝜃 ) )
3 syl56.3 ( 𝜃𝜏 )
4 2 3 syl6 ( 𝜒 → ( 𝜓𝜏 ) )
5 1 4 syl5 ( 𝜒 → ( 𝜑𝜏 ) )