Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imbitrrid.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| imbitrrid.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | syl5ibrcom | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| 2 | imbitrrid.2 | ⊢ ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( 𝜒 → ( 𝜑 → 𝜓 ) ) |
| 4 | 3 | com12 | ⊢ ( 𝜑 → ( 𝜒 → 𝜓 ) ) |