Metamath Proof Explorer


Theorem syl5impVD

Description: Virtual deduction proof of syl5imp . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.

1:: |- (. ( ph -> ( ps -> ch ) ) ->. ( ph -> ( ps -> ch ) ) ).
2:1,?: e1a |- (. ( ph -> ( ps -> ch ) ) ->. ( ps -> ( ph -> ch ) ) ).
3:: |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ps ) ).
4:3,2,?: e21 |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ( ph -> ch ) ) ).
5:4,?: e2 |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( ph -> ( th -> ch ) ) ).
6:5: |- (. ( ph -> ( ps -> ch ) ) ->. ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ).
qed:6: |- ( ( ph -> ( ps -> ch ) ) -> ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion syl5impVD ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜓 ) → ( 𝜑 → ( 𝜃𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 idn2 (    ( 𝜑 → ( 𝜓𝜒 ) )    ,    ( 𝜃𝜓 )    ▶    ( 𝜃𝜓 )    )
2 idn1 (    ( 𝜑 → ( 𝜓𝜒 ) )    ▶    ( 𝜑 → ( 𝜓𝜒 ) )    )
3 pm2.04 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( 𝜓 → ( 𝜑𝜒 ) ) )
4 2 3 e1a (    ( 𝜑 → ( 𝜓𝜒 ) )    ▶    ( 𝜓 → ( 𝜑𝜒 ) )    )
5 imim1 ( ( 𝜃𝜓 ) → ( ( 𝜓 → ( 𝜑𝜒 ) ) → ( 𝜃 → ( 𝜑𝜒 ) ) ) )
6 1 4 5 e21 (    ( 𝜑 → ( 𝜓𝜒 ) )    ,    ( 𝜃𝜓 )    ▶    ( 𝜃 → ( 𝜑𝜒 ) )    )
7 pm2.04 ( ( 𝜃 → ( 𝜑𝜒 ) ) → ( 𝜑 → ( 𝜃𝜒 ) ) )
8 6 7 e2 (    ( 𝜑 → ( 𝜓𝜒 ) )    ,    ( 𝜃𝜓 )    ▶    ( 𝜑 → ( 𝜃𝜒 ) )    )
9 8 in2 (    ( 𝜑 → ( 𝜓𝜒 ) )    ▶    ( ( 𝜃𝜓 ) → ( 𝜑 → ( 𝜃𝜒 ) ) )    )
10 9 in1 ( ( 𝜑 → ( 𝜓𝜒 ) ) → ( ( 𝜃𝜓 ) → ( 𝜑 → ( 𝜃𝜒 ) ) ) )