Metamath Proof Explorer


Theorem syl6an

Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Hypotheses syl6an.1 ( 𝜑𝜓 )
syl6an.2 ( 𝜑 → ( 𝜒𝜃 ) )
syl6an.3 ( ( 𝜓𝜃 ) → 𝜏 )
Assertion syl6an ( 𝜑 → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl6an.1 ( 𝜑𝜓 )
2 syl6an.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 syl6an.3 ( ( 𝜓𝜃 ) → 𝜏 )
4 3 ex ( 𝜓 → ( 𝜃𝜏 ) )
5 1 2 4 sylsyld ( 𝜑 → ( 𝜒𝜏 ) )