Metamath Proof Explorer


Theorem syl6c

Description: Inference combining syl6 with contraction. (Contributed by Alan Sare, 2-May-2011)

Ref Expression
Hypotheses syl6c.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl6c.2 ( 𝜑 → ( 𝜓𝜃 ) )
syl6c.3 ( 𝜒 → ( 𝜃𝜏 ) )
Assertion syl6c ( 𝜑 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl6c.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl6c.2 ( 𝜑 → ( 𝜓𝜃 ) )
3 syl6c.3 ( 𝜒 → ( 𝜃𝜏 ) )
4 1 3 syl6 ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
5 2 4 mpdd ( 𝜑 → ( 𝜓𝜏 ) )