Metamath Proof Explorer


Theorem syl6com

Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005)

Ref Expression
Hypotheses syl6com.1 ( 𝜑 → ( 𝜓𝜒 ) )
syl6com.2 ( 𝜒𝜃 )
Assertion syl6com ( 𝜓 → ( 𝜑𝜃 ) )

Proof

Step Hyp Ref Expression
1 syl6com.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 syl6com.2 ( 𝜒𝜃 )
3 1 2 syl6 ( 𝜑 → ( 𝜓𝜃 ) )
4 3 com12 ( 𝜓 → ( 𝜑𝜃 ) )