Metamath Proof Explorer


Theorem syl8ib

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses syl8ib.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
syl8ib.2 ( 𝜃𝜏 )
Assertion syl8ib ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 syl8ib.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 syl8ib.2 ( 𝜃𝜏 )
3 2 biimpi ( 𝜃𝜏 )
4 1 3 syl8 ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )