Metamath Proof Explorer


Theorem sylan

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan.1 ( 𝜑𝜓 )
sylan.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylan ( ( 𝜑𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylan.1 ( 𝜑𝜓 )
2 sylan.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 2 expcom ( 𝜒 → ( 𝜓𝜃 ) )
4 1 3 mpan9 ( ( 𝜑𝜒 ) → 𝜃 )