Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan.1 | ⊢ ( 𝜑 → 𝜓 ) | |
sylan.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
Assertion | sylan | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | sylan.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
3 | 2 | expcom | ⊢ ( 𝜒 → ( 𝜓 → 𝜃 ) ) |
4 | 1 3 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |