Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| sylan.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | sylan | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | sylan.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | 2 | expcom | ⊢ ( 𝜒 → ( 𝜓 → 𝜃 ) ) |
| 4 | 1 3 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |