Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| sylan2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | sylan2 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
| 2 | sylan2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | 1 | adantl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) |
| 4 | 3 2 | syldan | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |