Metamath Proof Explorer


Theorem sylan2

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan2.1 ( 𝜑𝜒 )
sylan2.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylan2 ( ( 𝜓𝜑 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylan2.1 ( 𝜑𝜒 )
2 sylan2.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 1 adantl ( ( 𝜓𝜑 ) → 𝜒 )
4 3 2 syldan ( ( 𝜓𝜑 ) → 𝜃 )