Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2d.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
sylan2d.2 | ⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜒 ) → 𝜏 ) ) | ||
Assertion | sylan2d | ⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜓 ) → 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
2 | sylan2d.2 | ⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜒 ) → 𝜏 ) ) | |
3 | 2 | ancomsd | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |
4 | 1 3 | syland | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜃 ) → 𝜏 ) ) |
5 | 4 | ancomsd | ⊢ ( 𝜑 → ( ( 𝜃 ∧ 𝜓 ) → 𝜏 ) ) |