Description: A syllogism inference. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan2i.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| sylan2i.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | sylan2i | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2i.1 | ⊢ ( 𝜑 → 𝜃 ) | |
| 2 | sylan2i.2 | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 3 | 1 | a1i | ⊢ ( 𝜓 → ( 𝜑 → 𝜃 ) ) |
| 4 | 3 2 | sylan2d | ⊢ ( 𝜓 → ( ( 𝜒 ∧ 𝜑 ) → 𝜏 ) ) |