Metamath Proof Explorer


Theorem sylan9

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses sylan9.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylan9.2 ( 𝜃 → ( 𝜒𝜏 ) )
Assertion sylan9 ( ( 𝜑𝜃 ) → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 sylan9.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylan9.2 ( 𝜃 → ( 𝜒𝜏 ) )
3 1 2 syl9 ( 𝜑 → ( 𝜃 → ( 𝜓𝜏 ) ) )
4 3 imp ( ( 𝜑𝜃 ) → ( 𝜓𝜏 ) )