Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan9bb.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| sylan9bb.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | ||
| Assertion | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bb.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | sylan9bb.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ↔ 𝜏 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜏 ) ) |