Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan9bb.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
sylan9bb.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | ||
Assertion | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜏 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
2 | sylan9bb.2 | ⊢ ( 𝜃 → ( 𝜒 ↔ 𝜏 ) ) | |
3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜒 ↔ 𝜏 ) ) |
5 | 3 4 | bitrd | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( 𝜓 ↔ 𝜏 ) ) |