Metamath Proof Explorer


Theorem sylan9bbr

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)

Ref Expression
Hypotheses sylan9bbr.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylan9bbr.2 ( 𝜃 → ( 𝜒𝜏 ) )
Assertion sylan9bbr ( ( 𝜃𝜑 ) → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 sylan9bbr.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylan9bbr.2 ( 𝜃 → ( 𝜒𝜏 ) )
3 1 2 sylan9bb ( ( 𝜑𝜃 ) → ( 𝜓𝜏 ) )
4 3 ancoms ( ( 𝜃𝜑 ) → ( 𝜓𝜏 ) )