Metamath Proof Explorer


Theorem sylan9r

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses sylan9r.1 ( 𝜑 → ( 𝜓𝜒 ) )
sylan9r.2 ( 𝜃 → ( 𝜒𝜏 ) )
Assertion sylan9r ( ( 𝜃𝜑 ) → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 sylan9r.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sylan9r.2 ( 𝜃 → ( 𝜒𝜏 ) )
3 1 2 syl9r ( 𝜃 → ( 𝜑 → ( 𝜓𝜏 ) ) )
4 3 imp ( ( 𝜃𝜑 ) → ( 𝜓𝜏 ) )