Metamath Proof Explorer
Description: Nested syllogism inference conjoining dissimilar antecedents.
(Contributed by NM, 14-May-1993)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9r.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
sylan9r.2 |
⊢ ( 𝜃 → ( 𝜒 → 𝜏 ) ) |
|
Assertion |
sylan9r |
⊢ ( ( 𝜃 ∧ 𝜑 ) → ( 𝜓 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylan9r.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
sylan9r.2 |
⊢ ( 𝜃 → ( 𝜒 → 𝜏 ) ) |
3 |
1 2
|
syl9r |
⊢ ( 𝜃 → ( 𝜑 → ( 𝜓 → 𝜏 ) ) ) |
4 |
3
|
imp |
⊢ ( ( 𝜃 ∧ 𝜑 ) → ( 𝜓 → 𝜏 ) ) |