Metamath Proof Explorer


Theorem sylan9req

Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007)

Ref Expression
Hypotheses sylan9req.1 ( 𝜑𝐵 = 𝐴 )
sylan9req.2 ( 𝜓𝐵 = 𝐶 )
Assertion sylan9req ( ( 𝜑𝜓 ) → 𝐴 = 𝐶 )

Proof

Step Hyp Ref Expression
1 sylan9req.1 ( 𝜑𝐵 = 𝐴 )
2 sylan9req.2 ( 𝜓𝐵 = 𝐶 )
3 1 eqcomd ( 𝜑𝐴 = 𝐵 )
4 3 2 sylan9eq ( ( 𝜑𝜓 ) → 𝐴 = 𝐶 )