Metamath Proof Explorer
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004)
(Proof shortened by Andrew Salmon, 14-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
sylan9ss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
|
sylan9ss.2 |
⊢ ( 𝜓 → 𝐵 ⊆ 𝐶 ) |
|
Assertion |
sylan9ss |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ⊆ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylan9ss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
sylan9ss.2 |
⊢ ( 𝜓 → 𝐵 ⊆ 𝐶 ) |
| 3 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ⊆ 𝐶 ) |