Metamath Proof Explorer


Theorem sylan9ss

Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Hypotheses sylan9ss.1 ( 𝜑𝐴𝐵 )
sylan9ss.2 ( 𝜓𝐵𝐶 )
Assertion sylan9ss ( ( 𝜑𝜓 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sylan9ss.1 ( 𝜑𝐴𝐵 )
2 sylan9ss.2 ( 𝜓𝐵𝐶 )
3 sstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 1 2 3 syl2an ( ( 𝜑𝜓 ) → 𝐴𝐶 )