Metamath Proof Explorer


Theorem sylan9ssr

Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004)

Ref Expression
Hypotheses sylan9ssr.1 ( 𝜑𝐴𝐵 )
sylan9ssr.2 ( 𝜓𝐵𝐶 )
Assertion sylan9ssr ( ( 𝜓𝜑 ) → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sylan9ssr.1 ( 𝜑𝐴𝐵 )
2 sylan9ssr.2 ( 𝜓𝐵𝐶 )
3 1 2 sylan9ss ( ( 𝜑𝜓 ) → 𝐴𝐶 )
4 3 ancoms ( ( 𝜓𝜑 ) → 𝐴𝐶 )