Metamath Proof Explorer


Theorem sylanb

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanb.1 ( 𝜑𝜓 )
sylanb.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylanb ( ( 𝜑𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylanb.1 ( 𝜑𝜓 )
2 sylanb.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 1 biimpi ( 𝜑𝜓 )
4 3 2 sylan ( ( 𝜑𝜒 ) → 𝜃 )