Description: A syllogism inference. (Contributed by NM, 18-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| sylanb.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | sylanb | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | sylanb.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 3 | 1 | biimpi | ⊢ ( 𝜑 → 𝜓 ) |
| 4 | 3 2 | sylan | ⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |