Metamath Proof Explorer


Theorem sylanblc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblc.1 ( 𝜑𝜓 )
sylanblc.2 𝜒
sylanblc.3 ( ( 𝜓𝜒 ) ↔ 𝜃 )
Assertion sylanblc ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylanblc.1 ( 𝜑𝜓 )
2 sylanblc.2 𝜒
3 sylanblc.3 ( ( 𝜓𝜒 ) ↔ 𝜃 )
4 3 biimpi ( ( 𝜓𝜒 ) → 𝜃 )
5 1 2 4 sylancl ( 𝜑𝜃 )