Metamath Proof Explorer


Theorem sylanblrc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblrc.1 ( 𝜑𝜓 )
sylanblrc.2 𝜒
sylanblrc.3 ( 𝜃 ↔ ( 𝜓𝜒 ) )
Assertion sylanblrc ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylanblrc.1 ( 𝜑𝜓 )
2 sylanblrc.2 𝜒
3 sylanblrc.3 ( 𝜃 ↔ ( 𝜓𝜒 ) )
4 2 a1i ( 𝜑𝜒 )
5 1 4 3 sylanbrc ( 𝜑𝜃 )