Metamath Proof Explorer


Theorem sylanbrc

Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylanbrc.1 ( 𝜑𝜓 )
sylanbrc.2 ( 𝜑𝜒 )
sylanbrc.3 ( 𝜃 ↔ ( 𝜓𝜒 ) )
Assertion sylanbrc ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylanbrc.1 ( 𝜑𝜓 )
2 sylanbrc.2 ( 𝜑𝜒 )
3 sylanbrc.3 ( 𝜃 ↔ ( 𝜓𝜒 ) )
4 1 2 jca ( 𝜑 → ( 𝜓𝜒 ) )
5 4 3 sylibr ( 𝜑𝜃 )