Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)
|
|
Ref |
Expression |
|
Hypotheses |
sylanbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
sylanbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
sylanbrc.3 |
⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
sylanbrc |
⊢ ( 𝜑 → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylanbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
sylanbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
3 |
|
sylanbrc.3 |
⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) |
4 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
5 |
4 3
|
sylibr |
⊢ ( 𝜑 → 𝜃 ) |