Metamath Proof Explorer
Description: Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009)
|
|
Ref |
Expression |
|
Hypotheses |
sylanbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
sylanbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
sylanbrc.3 |
⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
sylanbrc |
⊢ ( 𝜑 → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylanbrc.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
sylanbrc.2 |
⊢ ( 𝜑 → 𝜒 ) |
| 3 |
|
sylanbrc.3 |
⊢ ( 𝜃 ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 4 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝜓 ∧ 𝜒 ) ) |
| 5 |
4 3
|
sylibr |
⊢ ( 𝜑 → 𝜃 ) |